Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.451
Filtrar
1.
J Cancer Res Clin Oncol ; 150(5): 243, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38717677

RESUMEN

Colitis-associated colorectal cancer has been a hot topic in public health issues worldwide. Numerous studies have demonstrated the significance of myeloid-derived suppressor cells (MDSCs) in the progression of this ailment, but the specific mechanism of their role in the transformation of inflammation to cancer is unclear, and potential therapies targeting MDSC are also unclear. This paper outlines the possible involvement of MDSC to the development of colitis-associated colorectal cancer. It also explores the immune and other relevant roles played by MDSC, and collates relevant targeted therapies against MDSC. In addition, current targeted therapies for colorectal cancer are analyzed and summarized.


Asunto(s)
Neoplasias Asociadas a Colitis , Neoplasias Colorrectales , Células Supresoras de Origen Mieloide , Humanos , Células Supresoras de Origen Mieloide/inmunología , Neoplasias Asociadas a Colitis/patología , Neoplasias Asociadas a Colitis/etiología , Neoplasias Asociadas a Colitis/inmunología , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/etiología , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/terapia , Animales , Colitis/complicaciones , Colitis/inmunología
2.
J Hematol Oncol ; 17(1): 31, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38720342

RESUMEN

Glioblastoma (GBM), the predominant and primary malignant intracranial tumor, poses a formidable challenge due to its immunosuppressive microenvironment, thereby confounding conventional therapeutic interventions. Despite the established treatment regimen comprising surgical intervention, radiotherapy, temozolomide administration, and the exploration of emerging modalities such as immunotherapy and integration of medicine and engineering technology therapy, the efficacy of these approaches remains constrained, resulting in suboptimal prognostic outcomes. In recent years, intensive scrutiny of the inhibitory and immunosuppressive milieu within GBM has underscored the significance of cellular constituents of the GBM microenvironment and their interactions with malignant cells and neurons. Novel immune and targeted therapy strategies have emerged, offering promising avenues for advancing GBM treatment. One pivotal mechanism orchestrating immunosuppression in GBM involves the aggregation of myeloid-derived suppressor cells (MDSCs), glioma-associated macrophage/microglia (GAM), and regulatory T cells (Tregs). Among these, MDSCs, though constituting a minority (4-8%) of CD45+ cells in GBM, play a central component in fostering immune evasion and propelling tumor progression, angiogenesis, invasion, and metastasis. MDSCs deploy intricate immunosuppressive mechanisms that adapt to the dynamic tumor microenvironment (TME). Understanding the interplay between GBM and MDSCs provides a compelling basis for therapeutic interventions. This review seeks to elucidate the immune regulatory mechanisms inherent in the GBM microenvironment, explore existing therapeutic targets, and consolidate recent insights into MDSC induction and their contribution to GBM immunosuppression. Additionally, the review comprehensively surveys ongoing clinical trials and potential treatment strategies, envisioning a future where targeting MDSCs could reshape the immune landscape of GBM. Through the synergistic integration of immunotherapy with other therapeutic modalities, this approach can establish a multidisciplinary, multi-target paradigm, ultimately improving the prognosis and quality of life in patients with GBM.


Asunto(s)
Neoplasias Encefálicas , Células Supresoras de Origen Mieloide , Microambiente Tumoral , Humanos , Microambiente Tumoral/inmunología , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/patología , Células Supresoras de Origen Mieloide/inmunología , Glioma/inmunología , Glioma/terapia , Glioma/patología , Glioblastoma/inmunología , Glioblastoma/terapia , Glioblastoma/patología , Animales , Inmunoterapia/métodos , Linfocitos T Reguladores/inmunología
3.
Front Immunol ; 15: 1390327, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38742106

RESUMEN

Introduction: Tuberculous pleural effusion (TPE) stands as one of the primary forms of extrapulmonary tuberculosis (TB) and frequently manifests in regions with a high prevalence of TB, consequently being a notable cause of pleural effusion in such areas. However, the differentiation between TPE and parapneumonic pleural effusion (PPE) presents diagnostic complexities. This study aimed to evaluate the potential of myeloid-derived suppressor cells (MDSCs) in the pleural fluid as a potential diagnostic marker for distinguishing between TPE and PPE. Methods: Adult patients, aged 18 years or older, who presented to the emergency room of a tertiary referral hospital and received a first-time diagnosis of pleural effusion, were prospectively enrolled in the study. Various immune cell populations, including T cells, B cells, natural killer (NK) cells, and MDSCs, were analyzed in both pleural fluid and peripheral blood samples. Results: In pleural fluid, the frequency of lymphocytes, including T, B, and NK cells, was notably higher in TPE compared to PPE. Conversely, the frequency of polymorphonuclear (PMN)-MDSCs was significantly higher in PPE. Notably, compared to traditional markers such as the neutrophil-to-lymphocyte ratio and adenosine deaminase level, the frequency of PMN-MDSCs emerged as a more effective discriminator between PPE and TPE. PMN-MDSCs demonstrated superior positive and negative predictive values and exhibited a higher area under the curve in the receiver operating characteristic curve analysis. PMN-MDSCs in pleural effusion increased the levels of reactive oxygen species and suppressed the production of interferon-gamma from T cells following nonspecific stimulation. These findings suggest that MDSC-mediated immune suppression may contribute to the pathology of both TPE and PPE. Discussion: The frequency of PMN-MDSCs in pleural fluid is a clinically useful indicator for distinguishing between TPE and PPE.


Asunto(s)
Biomarcadores , Células Supresoras de Origen Mieloide , Derrame Pleural , Tuberculosis Pulmonar , Humanos , Células Supresoras de Origen Mieloide/inmunología , Células Supresoras de Origen Mieloide/metabolismo , Masculino , Femenino , Derrame Pleural/inmunología , Derrame Pleural/diagnóstico , Persona de Mediana Edad , Diagnóstico Diferencial , Adulto , Tuberculosis Pulmonar/diagnóstico , Tuberculosis Pulmonar/inmunología , Anciano , Neumonía/diagnóstico , Neumonía/inmunología , Estudios Prospectivos , Tuberculosis Pleural/diagnóstico , Tuberculosis Pleural/inmunología
4.
Exp Hematol ; 129: 104125, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38743005

RESUMEN

The revised International Prognostic Index (R-IPI) is an important prognostic tool in diffuse large B cell lymphoma (DLBCL); however, outcomes can vary markedly within R-IPI groups, and additional prognostic markers are needed. We conducted a prospective observational study to evaluate the circulating immature myeloid (IM) cell subsets and cytokine profiles of 31 patients with newly diagnosed DLBCL before and after chemoimmunotherapy. Among circulating IM cells, myeloid-derived suppressor cells (MDSCs) were the predominant cell type (73.8% ± 26%). At baseline, circulating monocytic MDSCs (M-MDSCs) and polymorphonuclear MDSCs (PMN-MDSCs) were predominantly mutually exclusive. Patients with DLBCL clustered into three distinct immunotypes according to MDSC levels and subtype predominance: M-MDSChigh, PMN-MDSChigh, and MDSClow. The M-MDSChigh immunotype was associated with the germinal center B cell-like (GCB) subtype and elevated serum IL-8 and MIP-1α levels. PMN-MDSChigh was associated with the non-GCB subtype and elevated IL-8, MCP-1, IP-10, TNFα, and IL-1Ra levels. Standard chemoimmunotherapy partially reduced M-MDSC distribution across the MDSClow and M-MDSChigh groups. By contrast, among the MDSClow and PMN-MDSChigh groups, PMN-MDSCs persisted after treatment. Two high-risk patients with non-GCB DLBCL and MDSClow immunotype experienced early disease recurrence within 12 months of treatment completion. This study demonstrates that distinct types of MDSCs are associated with subtypes of DLBCL. MDSC levels are dynamic and may be associated with disease status. Persistence of PMN-MDSCs among high-risk patients with DLBCL may be associated with early relapse.


Asunto(s)
Linfoma de Células B Grandes Difuso , Células Supresoras de Origen Mieloide , Humanos , Células Supresoras de Origen Mieloide/inmunología , Células Supresoras de Origen Mieloide/patología , Células Supresoras de Origen Mieloide/metabolismo , Linfoma de Células B Grandes Difuso/diagnóstico , Linfoma de Células B Grandes Difuso/terapia , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Linfoma de Células B Grandes Difuso/patología , Linfoma de Células B Grandes Difuso/inmunología , Linfoma de Células B Grandes Difuso/sangre , Femenino , Masculino , Persona de Mediana Edad , Anciano , Pronóstico , Inflamación/patología , Adulto , Estudios Prospectivos , Anciano de 80 o más Años , Citocinas/sangre , Inmunoterapia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico
5.
BMC Gastroenterol ; 24(1): 163, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38745150

RESUMEN

BACKGROUND: The liver regeneration is a highly complicated process depending on the close cooperations between the hepatocytes and non-parenchymal cells involving various inflammatory cells. Here, we explored the role of myeloid-derived suppressor cells (MDSCs) in the processes of liver regeneration and liver fibrosis after liver injury. METHODS: We established four liver injury models of mice including CCl4-induced liver injury model, bile duct ligation (BDL) model, concanavalin A (Con A)-induced hepatitis model, and lipopolysaccharide (LPS)-induced hepatitis model. The intrahepatic levels of MDSCs (CD11b+Gr-1+) after the liver injury were detected by flow cytometry. The effects of MDSCs on liver tissues were analyzed in the transwell co-culture system, in which the MDSCs cytokines including IL-10, VEGF, and TGF-ß were measured by ELISA assay and followed by being blocked with specific antibodies. RESULTS: The intrahepatic infiltrations of MDSCs with surface marker of CD11b+Gr-1+ remarkably increased after the establishment of four liver injury models. The blood served as the primary reservoir for hepatic recruitment of MDSCs during the liver injury, while the bone marrow appeared play a compensated role in increasing the number of MDSCs at the late stage of the inflammation. The recruited MDSCs in injured liver were mainly the M-MDSCs (CD11b+Ly6G-Ly6Chigh) featured by high expression levels of cytokines including IL-10, VEGF, and TGF-ß. Co-culture of the liver tissues with MDSCs significantly promoted the proliferation of both hepatocytes and hepatic stellate cells (HSCs). CONCLUSIONS: The dramatically and quickly infiltrated CD11b+Gr-1+ MDSCs in injured liver not only exerted pro-proliferative effects on hepatocytes, but also accounted for the activation of profibrotic HSCs.


Asunto(s)
Antígeno CD11b , Cirrosis Hepática , Regeneración Hepática , Ratones Endogámicos C57BL , Células Supresoras de Origen Mieloide , Animales , Células Supresoras de Origen Mieloide/metabolismo , Células Supresoras de Origen Mieloide/inmunología , Ratones , Cirrosis Hepática/patología , Cirrosis Hepática/metabolismo , Regeneración Hepática/fisiología , Antígeno CD11b/metabolismo , Masculino , Modelos Animales de Enfermedad , Hígado/patología , Hígado/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Tetracloruro de Carbono , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Enfermedad Hepática Inducida por Sustancias y Drogas/inmunología , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/fisiopatología , Concanavalina A , Ligadura , Lipopolisacáridos , Interleucina-10/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Células Estrelladas Hepáticas/metabolismo , Técnicas de Cocultivo , Hepatocitos/metabolismo , Hepatocitos/patología , Conductos Biliares
6.
Front Immunol ; 15: 1355405, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38720891

RESUMEN

Introduction: Sepsis engenders distinct host immunologic changes that include the expansion of myeloid-derived suppressor cells (MDSCs). These cells play a physiologic role in tempering acute inflammatory responses but can persist in patients who develop chronic critical illness. Methods: Cellular Indexing of Transcriptomes and Epitopes by Sequencing and transcriptomic analysis are used to describe MDSC subpopulations based on differential gene expression, RNA velocities, and biologic process clustering. Results: We identify a unique lineage and differentiation pathway for MDSCs after sepsis and describe a novel MDSC subpopulation. Additionally, we report that the heterogeneous response of the myeloid compartment of blood to sepsis is dependent on clinical outcome. Discussion: The origins and lineage of these MDSC subpopulations were previously assumed to be discrete and unidirectional; however, these cells exhibit a dynamic phenotype with considerable plasticity.


Asunto(s)
Células Supresoras de Origen Mieloide , Sepsis , Células Supresoras de Origen Mieloide/inmunología , Células Supresoras de Origen Mieloide/metabolismo , Humanos , Sepsis/inmunología , Transcriptoma , Masculino , Femenino , Diferenciación Celular/inmunología , Perfilación de la Expresión Génica
7.
J Nanobiotechnology ; 22(1): 237, 2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38735920

RESUMEN

BACKGROUND: Myeloid-derived suppressor cells (MDSCs) promote tumor growth, metastasis, and lead to immunotherapy resistance. Studies revealed that miRNAs are also expressed in MDSCs and promote the immunosuppressive function of MDSCs. Currently, few studies have been reported on inducible cellular microvesicle delivery of nucleic acid drugs targeting miRNA in MDSCs for the treatment of malignant tumors. RESULTS AND CONCLUSION: In this study, we designed an artificial DNA named G-quadruplex-enhanced circular single-stranded DNA-9 (G4-CSSD9), that specifically adsorbs the miR-9 sequence. Its advanced DNA folding structure, rich in tandem repeat guanine (G-quadruplex), also provides good stability. Mesenchymal stem cells (MSCs) were prepared into nanostructured vesicles by membrane extrusion. The MSC microvesicles-encapsulated G4-CSSD9 (MVs@G4-CSSD9) was delivered into MDSCs, which affected the downstream transcription and translation process, and reduced the immunosuppressive function of MDSCs, so as to achieve the purpose of treating melanoma. In particular, it provides an idea for the malignant tumor treatment.


Asunto(s)
ADN de Cadena Simple , G-Cuádruplex , Células Madre Mesenquimatosas , MicroARNs , Células Supresoras de Origen Mieloide , Animales , Células Supresoras de Origen Mieloide/metabolismo , Ratones , ADN de Cadena Simple/química , Línea Celular Tumoral , Ratones Endogámicos C57BL , Micropartículas Derivadas de Células/química , Micropartículas Derivadas de Células/metabolismo , ADN Circular/química , Humanos , Melanoma/tratamiento farmacológico
8.
Proc Natl Acad Sci U S A ; 121(20): e2306776121, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38709933

RESUMEN

A high-fat diet (HFD) is a high-risk factor for the malignant progression of cancers through the disruption of the intestinal microbiota. However, the role of the HFD-related gut microbiota in cancer development remains unclear. This study found that obesity and obesity-related gut microbiota were associated with poor prognosis and advanced clinicopathological status in female patients with breast cancer. To investigate the impact of HFD-associated gut microbiota on cancer progression, we established various models, including HFD feeding, fecal microbiota transplantation, antibiotic feeding, and bacterial gavage, in tumor-bearing mice. HFD-related microbiota promotes cancer progression by generating polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs). Mechanistically, the HFD microbiota released abundant leucine, which activated the mTORC1 signaling pathway in myeloid progenitors for PMN-MDSC differentiation. Clinically, the elevated leucine level in the peripheral blood induced by the HFD microbiota was correlated with abundant tumoral PMN-MDSC infiltration and poor clinical outcomes in female patients with breast cancer. These findings revealed that the "gut-bone marrow-tumor" axis is involved in HFD-mediated cancer progression and opens a broad avenue for anticancer therapeutic strategies by targeting the aberrant metabolism of the gut microbiota.


Asunto(s)
Neoplasias de la Mama , Diferenciación Celular , Dieta Alta en Grasa , Progresión de la Enfermedad , Microbioma Gastrointestinal , Leucina , Células Supresoras de Origen Mieloide , Animales , Dieta Alta en Grasa/efectos adversos , Leucina/metabolismo , Femenino , Humanos , Ratones , Células Supresoras de Origen Mieloide/metabolismo , Neoplasias de la Mama/patología , Neoplasias de la Mama/microbiología , Neoplasias de la Mama/metabolismo , Obesidad/microbiología , Obesidad/metabolismo , Obesidad/patología , Línea Celular Tumoral
9.
Cancer Rep (Hoboken) ; 7(5): e2066, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38703051

RESUMEN

BACKGROUND: The tumor microenvironment of solid tumors governs the differentiation of otherwise non-immunosuppressive macrophages and gamma delta (γδ) T cells into strong immunosuppressors while promoting suppressive abilities of known immunosuppressors such as myeloid-derived suppressor cells (MDSCs) upon infiltration into the tumor beds. RECENT FINDINGS: In epithelial malignancies, tumor-associated macrophages (TAMs), precursor monocytic MDSCs (M-MDSCs), and gamma delta (γδ) T cells often acquire strong immunosuppressive abilities that dampen spontaneous immune responses by tumor-infiltrating T cells and B lymphocytes against cancer. Both M-MDSCs and γδ T cells have been associated with worse prognosis for multiple epithelial cancers. CONCLUSION: Here we discuss recent discoveries on how tumor-associated macrophages and precursor M-MDSCs as well as tumor associated-γδ T cells acquire immunosuppressive abilities in the tumor beds, promote cancer metastasis, and perspectives on how possible novel interventions could restore the effective adaptive immune responses in epithelial cancers.


Asunto(s)
Linfocitos Infiltrantes de Tumor , Células Supresoras de Origen Mieloide , Microambiente Tumoral , Humanos , Microambiente Tumoral/inmunología , Linfocitos Infiltrantes de Tumor/inmunología , Células Supresoras de Origen Mieloide/inmunología , Linfocitos Intraepiteliales/inmunología , Neoplasias Glandulares y Epiteliales/inmunología , Neoplasias Glandulares y Epiteliales/patología , Tolerancia Inmunológica , Animales , Macrófagos Asociados a Tumores/inmunología , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Receptores de Antígenos de Linfocitos T gamma-delta/inmunología , Células Mieloides/inmunología
10.
Front Immunol ; 15: 1352821, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38711517

RESUMEN

Pancreatic cancer is a significant cause of cancer-related mortality and often presents with limited treatment options. Pancreatic tumors are also notorious for their immunosuppressive microenvironment. Irreversible electroporation (IRE) is a non-thermal tumor ablation modality that employs high-voltage microsecond pulses to transiently permeabilize cell membranes, ultimately inducing cell death. However, the understanding of IRE's impact beyond the initiation of focal cell death in tumor tissue remains limited. In this study, we demonstrate that IRE triggers a unique mix of cell death pathways and orchestrates a shift in the local tumor microenvironment driven, in part, by reducing the myeloid-derived suppressor cell (MDSC) and regulatory T cell populations and increasing cytotoxic T lymphocytes and neutrophils. We further show that IRE drives induce cell cycle arrest at the G0/G1 phase in vitro and promote inflammatory cell death pathways consistent with pyroptosis and programmed necrosis in vivo. IRE-treated mice exhibited a substantial extension in progression-free survival. However, within a span of 14 days, the tumor immune cell populations reverted to their pre-treatment composition, which resulted in an attenuation of the systemic immune response targeting contralateral tumors and ultimately resulting in tumor regrowth. Mechanistically, we show that IRE augments IFN- Î³ signaling, resulting in the up-regulation of the PD-L1 checkpoint in pancreatic cancer cells. Together, these findings shed light on potential mechanisms of tumor regrowth following IRE treatment and offer insights into co-therapeutic targets to improve treatment strategies.


Asunto(s)
Modelos Animales de Enfermedad , Electroporación , Neoplasias Pancreáticas , Microambiente Tumoral , Animales , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/patología , Microambiente Tumoral/inmunología , Ratones , Línea Celular Tumoral , Células Supresoras de Origen Mieloide/inmunología , Ratones Endogámicos C57BL , Humanos , Linfocitos T Reguladores/inmunología , Femenino
11.
Front Immunol ; 15: 1342497, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38694499

RESUMEN

Myeloid-derived suppressor cells (MDSCs) are a phenotypically heterogenous group of cells that potently suppress the immune response. A growing body of evidence supports the important role of MDSCs in a variety of lung diseases, such as asthma. However, the role of MDSCs in asthma exacerbation has so far not been investigated. Here, we studied the role of MDSCs in a murine model of influenza virus-induced asthma exacerbation. BALB/c mice were exposed to house dust mite (HDM) three times a week for a total of five weeks to induce a chronic asthmatic phenotype, which was exacerbated by additional exposure to the A/Hamburg/5/2009 hemagglutinin 1 neuraminidase 1 (H1N1) influenza virus. Induction of lung inflammatory features, production of T helper (Th) 1- and Th2- associated inflammatory cytokines in the lavage fluid and an increased airway hyper-responsiveness were observed, establishing the asthma exacerbation model. The number and activity of pulmonary M-MDSCs increased in exacerbated asthmatic mice compared to non-exacerbated asthmatic mice. Furthermore, depletion of MDSCs aggravated airway hyper-responsiveness in exacerbated asthmatic mice. These findings further denote the role of MDSCs in asthma and provide some of the first evidence supporting a potential important role of MDSCs in asthma exacerbation.


Asunto(s)
Asma , Citocinas , Modelos Animales de Enfermedad , Subtipo H1N1 del Virus de la Influenza A , Ratones Endogámicos BALB C , Células Supresoras de Origen Mieloide , Infecciones por Orthomyxoviridae , Animales , Asma/inmunología , Células Supresoras de Origen Mieloide/inmunología , Ratones , Infecciones por Orthomyxoviridae/inmunología , Citocinas/metabolismo , Subtipo H1N1 del Virus de la Influenza A/inmunología , Femenino , Pyroglyphidae/inmunología , Progresión de la Enfermedad , Pulmón/inmunología , Pulmón/patología , Pulmón/virología , Células Th2/inmunología
12.
Int Immunopharmacol ; 133: 112058, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38613883

RESUMEN

Fetal growth restriction (FGR) is a major cause of premature and low-weight births, which increases the risk of necrotizing enterocolitis (NEC); however, the association remains unclear. We report a close correlation between placental polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) and NEC. Newborns with previous FGR exhibited intestinal inflammation and more severe NEC symptoms than healthy newborns. Placental PMN-MDSCs are vital regulators of fetal development and neonatal gut inflammation. Placental single-cell transcriptomics revealed that PMN-MDSCs populations and olfactomedin-4 gene (Olfm4) expression levels were significantly increased in PMN-MDSCs in later pregnancy compared to those in early pregnancy and non-pregnant females. Female mice lacking Olfm4 in myeloid cells mated with wild-type males showed FGR during pregnancy, with a decreased placental PMN-MDSCs population and expression of growth-promoting factors (GPFs) from placental PMN-MDSCs. Galectin-3 (Gal-3) stimulated the OLFM4-mediated secretion of GPFs by placental PMN-MDSCs. Moreover, GPF regulation via OLFM4 in placental PMN-MDSCs was mediated via hypoxia inducible factor-1α (HIF-1α). Notably, the offspring of mothers lacking Olfm4 exhibited intestinal inflammation and were susceptible to NEC. Additionally, OLFM4 expression decreased in placental PMN-MDSCs from pregnancies with FGR and was negatively correlated with neonatal morbidity. These results revealed that placental PMN-MDSCs contributed to fetal development and ameliorate newborn intestinal inflammation.


Asunto(s)
Retardo del Crecimiento Fetal , Células Supresoras de Origen Mieloide , Placenta , Animales , Femenino , Embarazo , Humanos , Placenta/inmunología , Placenta/metabolismo , Recién Nacido , Células Supresoras de Origen Mieloide/inmunología , Células Supresoras de Origen Mieloide/metabolismo , Retardo del Crecimiento Fetal/inmunología , Ratones , Ratones Noqueados , Enterocolitis Necrotizante/inmunología , Enterocolitis Necrotizante/metabolismo , Factor Estimulante de Colonias de Granulocitos/metabolismo , Factor Estimulante de Colonias de Granulocitos/genética , Ratones Endogámicos C57BL , Masculino , Galectinas/metabolismo , Galectinas/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Intestinos/inmunología , Intestinos/patología
13.
J Cell Mol Med ; 28(9): e18310, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38676361

RESUMEN

Studies have shown that adoptive transfer of myeloid-derived suppressor cells (MDSCs) can alleviate various inflammatory diseases, including glomerulonephritis, but the long-term effects of the transferred MDSCs are still unclear. In addition, although glucocorticoids exert immunosuppressive effects on inflammatory diseases by inducing the expansion of MDSCs, the impact of glucocorticoids on the immunosuppressive function of MDSCs and their molecular mechanisms are unclear. In this study, we found that adoptive transfer of MDSCs to doxorubicin-induced focal segmental glomerulosclerosis (FSGS) mice for eight consecutive weeks led to an increase in serum creatinine and proteinuria and aggravation of renal interstitial fibrosis. Similarly, 8 weeks of high-dose dexamethasone administration exacerbated renal interstitial injury and interstitial fibrosis in doxorubicin-induced mice, manifested as an increase in serum creatinine and proteinuria, collagen deposition and α-SMA expression. On this basis, we found that dexamethasone could enhance MDSC expression and secretion of the fibrosis-related cytokines TGF-ß and IL-10. Mechanistically, we revealed that dexamethasone promotes the expression of immunoglobulin-like transcription factor 4 (ILT4), which enhances the T-cell inhibitory function of MDSCs and promotes the activation of STAT6, thereby strengthening the expression and secretion of TGF-ß and IL-10. Knocking down ILT4 alleviated renal fibrosis caused by adoptive transfer of MDSCs. Therefore, our findings demonstrate that the role and mechanism of dexamethasone mediate the expression and secretion of TGF-ß and IL-10 in MDSCs by promoting the expression of ILT4, thereby leading to renal fibrosis.


Asunto(s)
Dexametasona , Fibrosis , Células Supresoras de Origen Mieloide , Animales , Dexametasona/farmacología , Células Supresoras de Origen Mieloide/metabolismo , Células Supresoras de Origen Mieloide/efectos de los fármacos , Ratones , Riñón/patología , Riñón/metabolismo , Riñón/efectos de los fármacos , Masculino , Doxorrubicina/efectos adversos , Doxorrubicina/farmacología , Ratones Endogámicos C57BL , Glomeruloesclerosis Focal y Segmentaria/inducido químicamente , Glomeruloesclerosis Focal y Segmentaria/metabolismo , Glomeruloesclerosis Focal y Segmentaria/patología , Traslado Adoptivo , Modelos Animales de Enfermedad , Regulación hacia Arriba/efectos de los fármacos , Interleucina-10/metabolismo , Interleucina-10/genética , Factor de Crecimiento Transformador beta/metabolismo
14.
Cells ; 13(7)2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38607083

RESUMEN

The neuro-immune axis has a crucial function both during physiological and pathological conditions. Among the immune cells, myeloid-derived suppressor cells (MDSCs) exert a pivotal role in regulating the immune response in many pathological conditions, influencing neuroinflammation and neurodegenerative disease progression. In chronic neuroinflammation, MDSCs could lead to exacerbation of the inflammatory state and eventually participate in the impairment of cognitive functions. To have a complete overview of the role of MDSCs in neurodegenerative diseases, research on PubMed for articles using a combination of terms made with Boolean operators was performed. According to the search strategy, 80 papers were retrieved. Among these, 44 papers met the eligibility criteria. The two subtypes of MDSCs, monocytic and polymorphonuclear MDSCs, behave differently in these diseases. The initial MDSC proliferation is fundamental for attenuating inflammation in Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS), but not in amyotrophic lateral sclerosis (ALS), where MDSC expansion leads to exacerbation of the disease. Moreover, the accumulation of MDSC subtypes in distinct organs changes during the disease. The proliferation of MDSC subtypes occurs at different disease stages and can influence the progression of each neurodegenerative disorder differently.


Asunto(s)
Células Supresoras de Origen Mieloide , Enfermedades Neurodegenerativas , Humanos , Células Supresoras de Origen Mieloide/patología , Enfermedades Neuroinflamatorias , Enfermedades Neurodegenerativas/patología , Inflamación/patología , Proliferación Celular
15.
BMC Infect Dis ; 24(1): 399, 2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38609858

RESUMEN

BACKGROUND: Immunosuppression is a leading cause of septic death. Therefore, it is necessary to search for biomarkers that can evaluate the immune status of patients with sepsis. We assessed the diagnostic and prognostic value of low-density neutrophils (LDNs) and myeloid-derived suppressor cells (MDSCs) subsets in the peripheral blood mononuclear cells (PBMCs) of patients with sepsis. METHODS: LDNs and MDSC subsets were compared among 52 inpatients with sepsis, 33 inpatients with infection, and 32 healthy controls to investigate their potential as immune indicators of sepsis. The percentages of LDNs, monocytic MDSCs (M-MDSCs), and polymorphonuclear MDSCs (PMN-MDSCs) in PBMCs were analyzed. Sequential organ failure assessment (SOFA) scores, C-reactive protein (CRP), and procalcitonin (PCT) levels were measured concurrently. RESULTS: The percentages of LDNs and MDSC subsets were significantly increased in infection and sepsis as compared to control. MDSCs performed similarly to CRP and PCT in diagnosing infection or sepsis. LDNs and MDSC subsets positively correlated with PCT and CRP levels and showed an upward trend with the number of dysfunctional organs and SOFA score. Non-survivors had elevated M-MDSCs compared with that of patients who survived sepsis within 28 days after enrollment. CONCLUSIONS: MDSCs show potential as a diagnostic biomarker comparable to CRP and PCT, in infection and sepsis, even in distinguishing sepsis from infection. M-MDSCs show potential as a prognostic biomarker of sepsis and may be useful to predict 28-day hospital mortality in patients with sepsis.


Asunto(s)
Células Supresoras de Origen Mieloide , Sepsis , Humanos , Leucocitos Mononucleares , Pronóstico , Pacientes Internos , Diagnóstico Precoz , Sepsis/diagnóstico , Proteína C-Reactiva , Polipéptido alfa Relacionado con Calcitonina , Biomarcadores
16.
J Nanobiotechnology ; 22(1): 174, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38609922

RESUMEN

Photothermal therapy is favored by cancer researchers due to its advantages such as controllable initiation, direct killing and immune promotion. However, the low enrichment efficiency of photosensitizer in tumor site and the limited effect of single use limits the further development of photothermal therapy. Herein, a photo-responsive multifunctional nanosystem was designed for cancer therapy, in which myeloid-derived suppressor cell (MDSC) membrane vesicle encapsulated decitabine-loaded black phosphorous (BP) nanosheets (BP@ Decitabine @MDSCs, named BDM). The BDM demonstrated excellent biosafety and biochemical characteristics, providing a suitable microenvironment for cancer cell killing. First, the BDM achieves the ability to be highly enriched at tumor sites by inheriting the ability of MDSCs to actively target tumor microenvironment. And then, BP nanosheets achieves hyperthermia and induces mitochondrial damage by its photothermal and photodynamic properties, which enhancing anti-tumor immunity mediated by immunogenic cell death (ICD). Meanwhile, intra-tumoral release of decitabine induced G2/M cell cycle arrest, further promoting tumor cell apoptosis. In vivo, the BMD showed significant inhibition of tumor growth with down-regulation of PCNA expression and increased expression of high mobility group B1 (HMGB1), calreticulin (CRT) and caspase 3. Flow cytometry revealed significantly decreased infiltration of MDSCs and M2-macrophages along with an increased proportion of CD4+, CD8+ T cells as well as CD103+ DCs, suggesting a potentiated anti-tumor immune response. In summary, BDM realizes photothermal therapy/photodynamic therapy synergized chemotherapy for cancer.


Asunto(s)
Células Supresoras de Origen Mieloide , Neoplasias , Fotoquimioterapia , Biomimética , Linfocitos T CD8-positivos , Decitabina/farmacología , Terapia Fototérmica , Neoplasias/tratamiento farmacológico
17.
BMC Biol ; 22(1): 88, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38641823

RESUMEN

BACKGROUND: Immunosuppressive status is prevalent in cancer patients and increases the complexity of tumor immunotherapy. It has been found that Listeria-vectored tumor vaccines had the potential ability of two-side regulatory effect on the immune response during immunotherapy. RESULTS: The results show that the combined immunotherapy with the LM∆E6E7 and LI∆E6E7, the two cervical cancer vaccine candidate strains constructed by our lab, improves the antitumor immune response and inhibits the suppressive immune response in tumor-bearing mice in vivo, confirming the two-sided regulatory ability of the immune response caused by Listeria-vectored tumor vaccines. The immunotherapy reduces the expression level of myeloid-derived suppressor cells (MDSCs)-inducing factors and then inhibits the phosphorylation level of STAT3 protein, the regulatory factor of MDSCs differentiation, to reduce the MDSCs formation ability. Moreover, vaccines reduce the expression of functional molecules associated with MDSCs may by inhibiting the phosphorylation level of the JAK1-STAT1 and JAK2-STAT3 pathways in tumor tissues to attenuate the immunosuppressive function of MDSCs. CONCLUSIONS: Immunotherapy with Listeria-vectored cervical cancer vaccines significantly reduces the level and function of MDSCs in vivo, which is the key point to the destruction of immunosuppression. The study for the first to elucidate the mechanism of breaking the immunosuppression.


Asunto(s)
Vacunas contra el Cáncer , Células Supresoras de Origen Mieloide , Neoplasias del Cuello Uterino , Femenino , Humanos , Ratones , Animales , Células Supresoras de Origen Mieloide/metabolismo , Células Supresoras de Origen Mieloide/patología , Vacunas contra el Cáncer/metabolismo , Neoplasias del Cuello Uterino/prevención & control , Neoplasias del Cuello Uterino/metabolismo , Fosforilación , Transducción de Señal
18.
J Immunother Cancer ; 12(4)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38663936

RESUMEN

RATIONALE: Androgen deprivation therapy (ADT) is pivotal in treating recurrent prostate cancer and is often combined with external beam radiation therapy (EBRT) for localized disease. However, for metastatic castration-resistant prostate cancer, EBRT is typically only used in the palliative setting, because of the inability to radiate all sites of disease. Systemic radiation treatments that preferentially irradiate cancer cells, known as radiopharmaceutical therapy or targeted radionuclide therapy (TRT), have demonstrable benefits for treating metastatic prostate cancer. Here, we explored the use of a novel TRT, 90Y-NM600, specifically in combination with ADT, in murine prostate tumor models. METHODS: 6-week-old male FVB mice were implanted subcutaneously with Myc-CaP tumor cells and given a single intravenous injection of 90Y-NM600, in combination with ADT (degarelix). The combination and sequence of administration were evaluated for effect on tumor growth and infiltrating immune populations were analyzed by flow cytometry. Sera were assessed to determine treatment effects on cytokine profiles. RESULTS: ADT delivered prior to TRT (ADT→TRT) resulted in significantly greater antitumor response and overall survival than if delivered after TRT (TRT→ADT). Studies conducted in immunodeficient NRG mice failed to show a difference in treatment sequence, suggesting an immunological mechanism. Myeloid-derived suppressor cells (MDSCs) significantly accumulated in tumors following TRT→ADT treatment and retained immune suppressive function. However, CD4+ and CD8+ T cells with an activated and memory phenotype were more prevalent in the ADT→TRT group. Depletion of Gr1+MDSCs led to greater antitumor response following either treatment sequence. Chemotaxis assays suggested that tumor cells secreted chemokines that recruited MDSCs, notably CXCL1 and CXCL2. The use of a selective CXCR2 antagonist, reparixin, further improved antitumor responses and overall survival when used in tumor-bearing mice treated with TRT→ADT. CONCLUSION: The combination of ADT and TRT improved antitumor responses in murine models of prostate cancer, however, this was dependent on the order of administration. This was found to be associated with one treatment sequence leading to an increase in infiltrating MDSCs. Combining treatment with a CXCR2 antagonist improved the antitumor effect of this combination, suggesting a possible approach for treating advanced human prostate cancer.


Asunto(s)
Células Supresoras de Origen Mieloide , Neoplasias de la Próstata , Animales , Masculino , Células Supresoras de Origen Mieloide/efectos de los fármacos , Células Supresoras de Origen Mieloide/metabolismo , Células Supresoras de Origen Mieloide/inmunología , Ratones , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/radioterapia , Radiofármacos/uso terapéutico , Radiofármacos/farmacología , Humanos , Línea Celular Tumoral , Radioisótopos de Itrio/uso terapéutico , Radioisótopos de Itrio/farmacología , Modelos Animales de Enfermedad , Antagonistas de Andrógenos/uso terapéutico , Antagonistas de Andrógenos/farmacología , Terapia Combinada
19.
Cell Commun Signal ; 22(1): 210, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38566195

RESUMEN

BACKGROUND: Caspase Recruitment Domain-containing protein 9 (CARD9) expressed in myeloid cells has been demonstrated to play an antifungal immunity role in protecting against disseminated candidiasis. Hereditary CARD9 ablation leads to fatal disseminated candidiasis. However, the myeloid cell types and molecular mechanisms implicated in CARD9 protecting against disseminated candidiasis remain wholly elusive. METHODS: The role of CARD9 ablation in exacerbating disseminated candidiasis was determined in vivo and in vitro. The molecular mechanism by which CARD9 ablation promotes acute kidney injury in disseminated candidiasis was identified by RNA-sequencing analysis. The expression of mitochondrial proteins and ferroptosis-associated proteins were measured by Quantitative real-time PCR and western blot. RESULTS: CARD9 ablation resulted in a reduced proportion of myeloid-derived suppressor cells (MDSCs) and a substantially lower expression of solute carrier family 7 member 11 (SLC7A11) in the kidneys, which increased susceptibility to acute kidney injury and renal ferroptosis during disseminated Candida tropicalis (C. tropicalis) infection. Moreover, CARD9-deficient MDSCs were susceptible to ferroptosis upon stimulation with C. tropicalis, which was attributed to augmented mitochondrial oxidative phosphorylation (OXPHOS) caused by reduced SLC7A11 expression. Mechanistically, C-type lectin receptors (CLRs)-mediated recognition of C. tropicalis promoted the expression of SLC7A11 which was transcriptionally manipulated by the Syk-PKCδ-CARD9-FosB signaling axis in MDSCs. FosB enhanced SLC7A11 transcription by binding to the promoter of SLC7A11 in MDSCs stimulated with C. tropicalis. Mitochondrial OXPHOS, which was negatively regulated by SLC7A11, was responsible for inducing ferroptosis of MDSCs upon C. tropicalis stimulation. Finally, pharmacological inhibition of mitochondrial OXPHOS or ferroptosis significantly increased the number of MDSCs in the kidneys to augment host antifungal immunity, thereby attenuating ferroptosis and acute kidney injury exacerbated by CARD9 ablation during disseminated candidiasis. CONCLUSIONS: Collectively, our findings show that CARD9 ablation enhances mitochondria-mediated ferroptosis in MDSCs, which negatively regulates antifungal immunity. We also identify mitochondria-mediated ferroptosis in MDSCs as a new molecular mechanism of CARD9 ablation-exacerbated acute kidney injury during disseminated candidiasis, thus targeting mitochondria-mediated ferroptosis is a novel therapeutic strategy for acute kidney injury in disseminated candidiasis.


Asunto(s)
Lesión Renal Aguda , Candidiasis , Ferroptosis , Células Supresoras de Origen Mieloide , Ratones , Animales , Antifúngicos , Ratones Noqueados
20.
PeerJ ; 12: e16988, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38560459

RESUMEN

Background: Myeloid-derived suppressor cells (MDSCs) have crucial immunosuppressive role in T cell dysfunction in various disease processes. However, the role of MDSCs and their impact on Tregs in COPD have not been fully understood. The aim of the present study is to investigate the immunomodulatory role of MDSCs and their potential impact on the expansion and function of Tregs in COPD patients. Methods: Peripheral blood samples were collected to analyze circulating MDSCs, Tregs, PD-1/PD-L1 expression to assess the immunomodulatory role of MDSC and their potential impact on the expansion and function of Treg in COPD. A total of 54 COPD patients and 24 healthy individuals were enrolled in our study. Flow cytometric analyses were performed to identify granulocytic MDSCs (G-MDSCs), monocytic MDSCs (M-MDSCs), Tregs, and the expression of PD-1/PD-L1(L2) on MDSCs and Tregs in peripheral blood. Results: Our results revealed a significantly higher percentage of G-MDSCs and M-MDSCs (p < 0.001) in COPD patients compared to the healthy controls. Additionally, a significantly higher proportion of peripheral blood Tregs was observed in COPD patients. Furthermore, an increased expression of cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) on Tregs (p < 0.01) was detected in COPD patients. The expression of PD-1 on CD4+ Tcells and Tregs, but not CD8+Tcells, was found to be increased in patients with COPD compared to controls. Furthermore, an elevated expression of PD-L1 on M-MDSCs (p < 0.01) was also observed in COPD patients. A positive correlation was observed between the accumulation of M-MDSCs and Tregs in COPD patients. Additionally, the percentage of circulating M-MDSCs is positively associated with the level of PD-1 (r = 0.51, p < 0.0001) and CTLA-4 (r = 0.42, p = 0.0014) on Tregs in COPD. Conclusion: The recruitment of MDSCs, accumulation of Tregs, and up-regulation of CTLA-4 on Treg in COPD, accompanied by an increased level of PD-1/PD-L1, suggest PD-1/PD-L1 axis may be potentially involved in MDSCs-induced the expansion and activation of Treg at least partially in COPD.


Asunto(s)
Células Supresoras de Origen Mieloide , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Antígeno B7-H1/metabolismo , Antígeno CTLA-4 , Células Supresoras de Origen Mieloide/metabolismo , Receptor de Muerte Celular Programada 1 , Linfocitos T Reguladores/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA